
Decidability and Complexity of the Membership
and Emptiness Problem of Fusion Grammars

Aaron Lye

University of Bremen, Department of Mathematics
P.O.Box 33 04 40, 28334 Bremen, Germany

lye@math.uni-bremen.de

Abstract. Fusion grammars are a novel approach to the generation of
hypergraphs. A fusion grammar is a hypergraph grammar which pro-
vides a start hypergraph of small connected components. To get large
connected hypergraphs, they can be copied multiple times and can be
fused by the application of fusion rules.
In this paper, we prove that the membership problem of fusion gram-
mars is decidable in non-deterministic polynomial time. Moreover, fusion
grammars exist for which deciding membership is NP-complete. We also
analyze the emptiness problem for fusion grammars and give a reduc-
tion to finding a special non-negative solution for a homogenious linear
diophantine equation system.

1 Motivation

Since the early 70’s graph grammars as a language generating device are con-
sidered [1]. Since then several variants of graph grammars have been introduced
and analyzed. Two major branches are hyperedge replacement (see, e.g., [2,3])
and node replacement grammars (see, e.g., [4]). Besides the generative power and
structural properties, e.g. about the derivation, decision problems and their com-
plexity are of particular interest. I.e., does there exist an algorithm for deciding
whether or not a specific mathematical assertion does or does not have a proof?
If yes, how efficient in terms of space and time is this algorithm? Besides the
theoretical relevance, answering these questions also has practical implications,
e.g. for parsing.

Fusion grammars [5] are a novel approach to the generation of hypergraph
languages. They are motivated by the fact, that fusion processes occur in various
scientific fields, like DNA computing, chemistry, tiling, fractal geometry, visual
modeling, etc. A fusion grammar is a hypergraph grammar which provides a start
hypergraph of small connected components. To get large connected hypergraphs,
they can be copied multiple times and can be fused by the application of fusion
rules.

In [5] it is shown that for substantial fusion grammars the membership prob-
lem is decidable. Nevertheless, its complexity and other decision problems, such
as the question if a fusion grammar generates the empty language, was left open.

It is of particular interest to know if efficient deterministic algorithms exists for
these problems. In this paper, we answer these questions.

The paper is structured as follows. Section 2 introduces basic notions and
notations of hypergraphs as far as needed. Section 3 recalls the notion of fu-
sion grammars. In Section 4, we prove that membership is decidable in non-
deterministic polynomial time and, furthermore, fusion grammars exist for which
deciding membership is NP-complete. Afterwards, in Section 5, we analyze the
emptiness problem for fusion grammars and give a reduction to finding a spe-
cial non-negative solution for a homogenious linear diophantine (i.e., integral)
equation system. Section 6 contains a conclusion.

2 Preliminaries

We consider hypergraphs the hyperedges of which are attached to a sequence of
nodes and labeled in a given label alphabet Σ.

A hypergraph over Σ is a system H = (V,E, att , lab) where V is a finite
set of nodes, E is a finite set of hyperedges, att : E → V ∗ is a function, called
attachment, where V ∗ is a sequence of vertices, and lab : E → Σ is a function,
called labeling.

The length of the attachment att(e) for e ∈ E is called type of e, and e
is called A-hyperedge if A is its label. The components of H = (V,E, att , lab)
may also be denoted by VH , EH , attH , and labH respectively. The class of all
hypergraphs over Σ is denoted by HΣ .

By [k] we denote the discrete hypergraph with the nodes 1, . . . , k for some
k ∈ N>0 and by A• we denote the hypergraph consisting of the nodes 1, . . . , k
to which a single A-hyperedge is attached.

In drawings, a hyperedge e with attachment att(e) = v1 · · · vk is depicted by

•v1 1

•v2
2 A

•vkk

i.e., numbered tentacles connect the label with the corresponding attachment
nodes. We assume the existence of a special label ∗ ∈ Σ that is omitted in draw-
ings. In this way, unlabeled hyperedges are represented by hyperedges labeled
with ∗.

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
Further, k ·H denotes the disjoint union of H with itself k times.

Given H,H ′ ∈ HΣ , a hypergraph morphism g : H → H ′ consists of two map-
pings gV : VH → VH′ and gE : EH → EH′ such that attH′(gE(e)) = g∗V (attH(e))
and labH′(gE(e)) = labH(e) for all e ∈ EH , where g∗V : V ∗H → V ∗H′ is the canonical
extension of gV , given by g∗V (v1 · · · vn) = gV (v1) · · · gV (vn) for all v1 · · · vn ∈ V ∗H .

The fusion of nodes is defined as a quotient by means of an equivalence
relation ≡ on the set of nodes VH as follows: H/≡ = (VH/≡, EH , attH/≡, labH)
with attH/≡(e) = [v1] · · · [vk] for e ∈ EH , attH(e) = v1 · · · vk where [v] denotes
the equivalence class of v ∈ VH and VH/≡ is the set of equivalence classes. It is

2

easy to see that f : H → H/≡ given by fV (v) = [v] for all v ∈ VH and fE(e) = e
for all e ∈ EH defines a quotient morphism.

Let H ∈ HΣ . Then a sequence of triples (i1, e1, o1) . . . (in, en, on) ∈ (N ×
EH × N)∗ is a path from v ∈ VH to v′ ∈ VH if v = attH(e1)i1 , v

′ = attH(en)on
and attH(ej)oj = attH(ej+1)ij+1

for j = 1, . . . , n − 1 where, for each e ∈ EH ,
attH(e)i = vi for attH(e) = v1 · · · vk and i = 1, . . . , k. H is connected if each
two nodes are connected by a path. A subgraph C of H, denoted by C ⊆ H, is
a connected component of H if it is connected and there is no larger connected
subgraph, i.e. C ⊆ C ′ ⊆ H and C ′ connected implies C = C ′. The set of
connected components of H is denoted by C(H).

We use the multiplication of H defined by means of C(H) as follows. Let
m : C(H)→ N>0 be a mapping, called multiplicity, then m·H =

∑
C∈C(H)

m(C)·C.

3 Fusion Grammars

Besides a start hypergraph, a fusion grammar provides a set of fusion rules.
The application of a fusion rule merges certain nodes which are given by two
complementary hyperedges. Complementarity is defined on a set F of fusion la-
bels that comes together with a complementary label A for each A ∈ F . Given
a hypergraph, the set of all possible fusions is finite as fusion rules never cre-
ate anything. To overcome this limitation, we allow arbitrary multiplications
of disjoint components within derivations. The language generated by a fusion
grammar does not consist of all terminal hypergraphs that are derived from
the start hypergraph, but are chosen in a slightly more complicated way. The
problem is that the multiplications may also produce components that are not
really needed. Therefore, we consider only terminal connected components of the
derived hypergraphs as members of the generated language. Moreover, we use
markers. They allow us to distinguish between wanted and unwanted terminal
components; that is, markers identify components of the start hypergraph that
contribute to the generation of a hypergraph. The language consists of all re-
sulting connected components that contain no fusion symbols and at least one
marker symbol, where marker symbols are removed in the end.

Definition 1. 1. Let F ⊆ Σ and k : F → N be a type function. Let A /∈ F be
the complementary label for each A ∈ F such that A 6= B for all A 6= B.
Let F = {A | A ∈ F}. The typing is extended to complementary labels by
k(A) = k(A) for all A ∈ F . Then F is called fusion alphabet and A ∈ F
specifies the following fusion rule, denoted by fr(A):

3

•1

1

•1
′

1
•2

2
•2
′

2

A A

• •
k(A)

k(A)

k(A)′

k(A)

←

•1 •1
′

•2 •2
′

•
k(A)

•
k(A)′

→

•1 = 1′

•2 = 2′

•
k(A) = k(A)′

The number at the nodes identify them so that the left-hand side inclusion
and the right-hand side morphism are made visible. The morphism maps
each attachment node and its primed counterpart to the same right-hand
side node.

2. A fusion grammar is a system FG = (Z,F,M, T) where Z ∈ HF∪F∪T∪M is
a start hypergraph, F ⊆ Σ is a fusion alphabet, M ⊆ Σ with M∩(F ∪F) = ∅
is a set of markers, and T ⊆ Σ with T ∩ (F ∪ F) = ∅ = T ∩M is a set of
terminal labels.

3. A derivation step H =⇒H ′ for some H,H ′ ∈ HΣ is either a fusion rule
application H =⇒

fr
H ′ or a multiplication H =⇒

m
m·H for some multiplicity m.

4. A derivation is the reflexive and transitive closure of derivation steps, i.e.,
H

n
=⇒H ′ of length n ≥ 0 is a sequence H0 =⇒H1 =⇒ . . .=⇒Hn with H =

H0 and H ′ = Hn. If the length does not matter, one may write H
∗

=⇒H ′.
5. L(FG) = {remM (Y) | Z ∗

=⇒H,Y ∈ C(H)∩ (HT∪M −HT)} is the generated
language of FG where remM (Y) is the hypergraph obtained when removing
all hyperedges with labels in M from Y .

In order to generate hypergraphs with terminal hyperedges, the start hyper-
graph must contain at least one terminal hyperedge. Fusion grammars in which
every component of the start hypergraph contains terminal edges are called sub-
stantial. In these grammars every multiplication increases the number of terminal
hyperedges, every fusion of two disjoint connected components results in some
connected component with more terminal hyperedges as the two source com-
ponents. The fusion of two complementary hyperedges in the same connected
component keeps the number of terminal hyperedges.

Example 1. Let F = {A1, . . . , Ak} with type(Ai) = 1 for all Ai ∈ F . Let K =
{1, . . . , k} × {1, . . . , k} for some k ∈ N>0. Consider the fusion grammar FG =

(z# +
∑

(i,j)∈K
zi,j , F, {#}, {∗}) where z# = • 1

•
2 #

•k
A1

A1

A2 A2

Ak
Ak and zi,j =

Ai • • Aj . Then one may get symmetric structures like circles, e.g. like the
one in Fig. 1a where z# is fused with k connected components zi,j for respective
i, j, or bipartite graphs like the one in Fig. 1b, where z# is multiplied once and
then k zi,j components are fused with both z#, In both cases π denotes some
permutation on 1, . . . , k. But one may also get also very irregular structures.
Nevertheless, the language can be characterized as follows. All hypergraphs of the

4

#

π(2)π(1)

π(k)

(a)

•1 •
π(1)

•2 •
π(2)

•
k

•
π(k)

#

(b)

Fig. 1: Derived hypergraphs of the fusion grammar in Example 1 before the
markers are removed

language have in common that, after removing the #-hyperedges, all hyperedges
are of type 2 and all vertices have degree 2.

Note that FG is not substantial. However, it can be easily transformed into
a substantial grammar by replacing z# by

∑
(i,j)∈K

z#,i,j where z#,i,j is the result

of the application of the fusion rule fr(Ai) to z# and zi,j .

4 Membership

In [5] it is shown that for substantial fusion grammars the membership problem
is decidable. In this section we focus on the complexity of this problem.

Theorem 1. For every substantial fusion grammar FG, the membership prob-
lem is in NP (polynomial in the size of the asked hypergraph).

Proof. Given a substantial fusion grammar (Z,F,M, T) and some hypergraph
H ∈ HΣ . Because the fusion grammar is substantial, each connected component
in the start hypergraph contains at least one terminal hyperedge. Hence, one
needs at most the fusion of k connected components of the start hypergraph
to get H where k is the number of terminal labeled hyperedges in H. Let H =
remM (H ′). Then by [5, Corollary 1] the derivation Z

∗
=⇒H ′+X can be rewritten

as the most parallelized derivation where one may start with the multiplication,
and then performs the necessary fusions, i.e., Z =⇒

m
m ·Z =⇒

fr(F)+
H ′+X, where X

denotes the disjoint union of connected components which are present but not
needed. The multiplicity m is bounded by k, i.e. m ≤ k. By the fact that the
number of possible fusions is finite, the length of the derivation is linear in the
size of the graph generated.

In other words, for every hypergraph H of size k, if H ∈ L(FG) then H has a
derivation of length ≤ f(k) for some linear function f . Hence, the derivation and
the selection of the connected component can be non-deterministically guessed
by a non-deterministic Turing machine in polynomial time. Afterwards, a test

5

whether the generated hypergraph is isomorphic to H can be performed in non-
deterministic polynomial time again. This second guess and the test takes linear
time in k. ut

Theorem 2. There is a fusion grammar FG such that deciding membership for
L(FG) is NP-complete.

Proof. This follows from the fact that the result holds even for hyperedge replace-
ment grammars (cf. [3, Theorem 2.7.2]), which fusion grammars can simulate [5,
Theorem 2]. The transformation of hyperedge replacement grammars into fu-
sion grammars presented in [5] takes linear time. More precisely, let (N,T, P, S)
be some hyperedge replacement grammar where N and T are two finite sets of
non-terminal and terminal symbols, P is a finite set of hyperedge replacement
rules and S ∈ N is a start symbol. Then ((S,#)• +

∑
r∈P

hgr(r), N, {#}, T) with

/∈ N ∪T is the constructed fusion grammar where (S,#)• denotes the discrete
hypergraph of type S vertices equipped with two hyperedges labeled with S and
#, respectively, and hgr(r) is the hypergraph representation of the rule which
is the right-hand side of the rule equipped with some hyperedge complementary
to the left-hand side. Consequently, the transformation is linear in P . ut

5 Emptiness

In this section we discuss the emptiness problem for fusion grammars. In contrast
to the membership problem we do not restrict ourselves to substantial fusion
grammars. We show that the non-emptiness problem for fusion grammars can
be reduced to finding a special non-negative solution for a homogenious linear
diophantine (i.e., integral) equation system.

Definition 2. Let FG = (Z,F,M, T) be a fusion grammar, let c be the number
of connected components in Z and let r be the size of the fusion alphabet F .
Fix an ordering z1, . . . , zc for the connected components in Z and an ordering
f1, . . . , fr for the fusion alphabet. Define a corresponding Zr×c matrix for the
grammar as follows.

1. Each connected component can be represented as a vector over Zr and all
together can be represented by a Zr×c matrix where columns represent con-
nected components and each row concerns one fusion and its complementary
label. The scalars of the matrix are the difference between the number of F -
labeled hyperedges and the respective complementary ones, i.e.,

D =


d11 d12 . . . d1c
d21 d22 . . . d2c
...

...
...

dr1 dr2 . . . drc

 , dij = aij − bij

where aij is the number of fi-labeled hyperedges and bij is the number of
f i-labeled hyperedges in zj .

6

2. Define the index set of significant indices by I = {j ∈ {1, . . . , c} | zj has a
marker}.

Example 2. Consider the fusion grammar FG = (
∑5
j=1 zi, {A,B}, {#}, {∗})

with type(A) = type(B) = 2 and zi for i = 1, . . . , 5 as follows.

z1 = B

A

z2 =

A

A

z3 =

A

z4 = B

A

B z5 = B

The respective column vectors d1, . . . , d5 ∈ Z2 are:

d1 =

(
1
1

)
, d2 =

(
0
0

)
, d3 =

(
−1
0

)
, d4 =

(
1
0

)
, d5 =

(
0
−1

)
where the upper entry corresponds to the number of A-hyperedges and the lower
entry corresponds to B-hyperedges. Together they from the matrix

D =

(
1 0 −1 1 0
1 0 0 0 −1

)
.

I = {1} because only z1 carries a marker.
It is easy to see that the language is not empty and generates graphs like the

following.

Theorem 3. Let FG = (Z,F,M, T) be a fusion grammar, let D be its matrix
representation and let I be some corresponding index set of significant indices.
We introduce some multiplicity variable kj ∈ N for each zj. Then L(FG) is not
empty if and only if there exist assignments to the multiplicity variables such
that

D · k = 0 (1)

where k = (k1, . . . , kc)
T and ∑

j∈I
kj ≥ 1. (2)

Proof. In the following the two implications are proven.
Let L(FG) be not empty, i.e., there exists some H ∈ L(FG). Then there is a

derivation Z
∗

=⇒H ′+X with H = remM (H ′), H ′ connected and H ′ ∈ HT∪M −
HT . Moreover, H ′ is a fusion of connected components of Z. Let z1, . . . , zc be
some ordering of the connected components in Z. Let mj be the number of copies

7

of zj needed to construct H ′ for j = 1, . . . , c. Let f1, . . . , fr be the elements of
F in some order. Let aij be the number of fi-labeled hyperedges and bij be the
number of f i-labeled hyperedges in zj for i = 1, . . . , r and j = 1, . . . , c. As H ′ is
the fusion of all these connected components and does not have any hyperedges
labeled in F ∪F , all those F ∪F -hyperedges disappear in the fusions. As a single
fusion consumes exactly one pair fi, f i for some i, the number of fi-hyperedges
and the number of f i-hyperedges for i = 1, . . . , r in the involved connected
components must be equal, i.e.,

c∑
j=1

aij ·mj −
c∑
j=1

bij ·mj =

c∑
j=1

(aij − bij) ·mj = 0.

This means that the vector (m1, . . . ,mc) is a solution of the homogeneous
equation system given by the matrix (dij)i=1,...,r,j=1,...,c with dij = aij − bij
defined in Equation (1). Moreover, H ′ contains a marker hyperedge. Hence,
mi > 0 for some zi with a marker hyperedge, i.e., Equation (2) is also satisfied.

Conversely, let (m1, . . . ,mc) 6= 0 be a solution for the system in Equation (1)
which satisfies Equation (2). Then this vector gives the multiplicity of the re-
spective connected components of Z such that the number of fi-hyperedges and
the number of f i-hyperedges for i = 1, . . . , r are equal. After respective multi-

plications the connected components
c∑
j=1

mj · zj (where zj is omitted if mj = 0)

can be fused arbitrarily yielding one or several connected components. By the
assumption that mi > 0 for some zi with a marker hyperedge at least one of the
resulting connected components contributes to the language after removing the
marker. Hence, the language is not empty. ut

Remark 1. The solution for Equation (1) is invariant under

– permutation of rows of D because the order of fusion variables is irrelevant;
– permutation of columns of D (with the same permutation applied on the

column vector k) because this is simply fixing a different ordering on the
connected components of the start hypergraph;

– addition of columns which corresponds to fusion of connected components.

Remark 2. If a column for some connected components with marker is initially
the zero vector, then we can directly conclude that the system has a solution
and the language is not empty.

Example 3. Consider the following matrix1 2 0
0 2 0
1 1 0


where the third column vector corresponds to some connected component with
marker. The zero vector may have been the result by the fact, that either the

8

connected component has no F -labeled hyperedges or the number of fi- and
f i-labeled hyperedges for all i = 1, 2, 3 are equal. In the latter case obviously the
fi- and f i-labeled hyperedges for all i = 1, 2, 3 can be fused arbitrarily resulting
in some connected component the hyperedges of which are labeled only with
terminal and marker symbols.

Remark 3. Solving the system corresponds to finding a linear dependence of
some column corresponding to some connected component with marker with
the remaining column vectors.

From this observation, we can directly conclude that if no column vector
corresponding to some connected component is marker is the zero vector and
some row contains no negative or no positive entries, then the system has no
solution because the only possible assignment would be k1 = . . . = kc = 0 which
violates Equation (2).

Example 4. Given four connected components z1, . . . , z4 over three fusion sym-
bols in some start hypergraph where z2 contains a marker. Let these components
be such that

D =

 1 3 1 2
0 −1 1 0
−2 3 0 0

 .

By the fact that the first row contains only positive entries, there are no multi-
plicities k1, . . . , k4 ∈ N such that k2 > 0 and k1 + 3k2 + k3 + 2k4 = 0. Hence, the
language is empty.

Remark 4. The two tests mentioned in Remark 2 and Remark 3 can be tested
in linear time in the size of the matrix D.

Example 5 (Continue Example 2). Recall D =

(
1 0 −1 1 0
1 0 0 0 −1

)
. Because only z1

carries a marker hyperedge, we have to test d1 = (0, 0)T . But d1 = (1, 1) 6= (0, 0).
Hence, the first test fails. Further, every row contains positive and negative
scalars. Therefore, the second test fails as well. Hence, the two tests do not help
in this particular case.

However, it is easy to see that the column vectors d1, . . . , d5 are in linear
dependence: k1 − k3 + k4 = 0 implies k3 − k4 = k1 and k1 − k5 = 0 implies
k1 = k5. Further, k1 ≥ 1 must be satisfied. Besides this, it is easy to see that k4
can be neglected (e.g. k1 = 7, k3 = 7, k4 = 0).

Assume k1, . . . , k5 being a solution for Equation (1) satisfying Equation (2).
We elaborate the cases k1 = 1 and k1 > 1 a bit.

In the case k1 = 1, we have due to the linear equations k5 = 1 and k4 = k3−1.
k2 can be arbitrary. The case k2 = 4, k3 = 3, k4 = 2 is depicted at the end of
Example 2.

The case k1 > 1 may need more explaination. Even though that there are
several copies, precisely, k1 copies of z1 (i.e., several connected components with
markers), this does not compromise the result, because every possible fusion of

9

all the connected components results in connected components which are labeled
only with terminal and marker-symbols.

In contrast, if z5 is removed from the start hypergraph, then there is no
multiplicity such that both equations is satisfied because k1 = 0 is required
to satisfy Equation (1) but this violates Equation (2). The language is empty
as there is no derivation resulting in connected components where connected
components are only labeled with terminal and marker symbols.

Remark 5. 1. We are not asking if the columns of the system are linear de-
pendent but if specific columns (at least one corresponding to a marker
component) are linear combinations.

2. Usually, a linear equation system can be solved in deterministic polynomial
time using Gaussian elimination. In our case applying Gaussian elimination
is not possible as we consider a free Z module over Z, i.e., our underlying ring
for our scalars is no field but a principle ideal domain. Hence, multiplication
of rows by a scalar is not possible, because this operation is not invertible.
As a result we cannot apply Gaussion elimination to obtain the reduced row
echelon form of the matrix D. But the Hermite normal form, which is also
a triangular normal form, can be calculated.

3. We are even more restricted as we are not searching for any solution but
k1, . . . , kc ∈ N.

4. Further, it is well known that a homogeneous linear equation system has
either exactly one solution (the trivial solution k1 = k2 = . . . = kn = 0) or
infinite many solutions (including the trivial one) [6, Section I.5]. But the
trivial solution does not satisfy Equation (2). Thus, if Equation (1) has only
the trivial solution, then the language is empty.

Fact 1 Ax = b has an integer solution x if and only if the system Hy = b has
an integer solution y where Uy = x, U the corresponding unimodular matrix U
for A to obtain H and H is the column style Hermite normal form of H.

Because H is triangular checking Hy = b has an integer solution is easier than
Ax = b. Further, in our case b = 0.

Votyakov and Frumkin [7] showed that for any system Ax = 0 of homogenious
linear diophantine (i.e., integral) equations we can find a basis for the solution
set in polynomial time. Futher, the Hermite normal form H and the unimodular
matrix U can be computed in deterministic polynomial time (cf. [8]).

Open Question: Does the basis for the solution set satisfy k1, . . . , kc ∈ N?

Conjecture: This is the case and this can be checked in polynomial time.

6 Conclusion

In this paper we analyzed decidability and complexity of the membership and
emptiness problem of fusion grammars.

10

Fusion grammars are closely related to hyperedge replacement grammars, but
are also more powerful. This close relation results that membership can be com-
puted in NP and also that there are languages for which deciding membership
is NP-complete.

We analyzed the emptiness problem for fusion grammars and gave a reduction
to finding a special non-negative solution for a homogenious linear diophantine
(i.e., integral) equation system. These homogenious linear diophantine equation
system are well understood. However, due to the fact, that we are not asking
if the columns of the system are linear dependent but if specific columns (at
least one corresponding to a marker component) are linear combinations and
that we are even more restricted as we are not searching for any solution but
k1, . . . , kc ∈ N, the complexity of the decision procedure remains to show. We
conjecture, even though that fusion grammars are more powerful the emptiness
problem remains efficient computable.

Further research directions may be other decision problems like finiteness or
equivalence of languages generated by fusion grammars. A closer analysis of the
complexity of the membership problem for non-substantial may be interesting
as well.

It is also very interesting that the proof for deciding emptiness relies only on
a quantitative argument, i.e., it is irrelevant how the connected components are
fused. As a consequence, it may be interesting to analyze this closure property
of permutations further.

Acknowledgment. We are grateful to Hans-Jörg Kreowski, Sabine Kuske and
Leonard Wienke for valuable discussions and remarks. We also thank the anony-
mous reviewers for their valuable comments.

References

1. Hartmut Ehrig, Michael Pfender, and Hans-Jürgen Schneider. Graph grammars:
An algebraic approach. In IEEE Conf. on Automata and Switching Theory, pages
167–180, Iowa City, 1973.

2. Annegret Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1992.

3. Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge replacement
graph grammars. In G. Rozenberg, editor, Handbook of Graph Grammars and Com-
puting by Graph Transformation. Vol. 1: Foundations, chapter 2, pages 95–162.
World Scientific, 1997.

4. Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1: Foundations, chapter 1, pages 1–94. World Scientific, 1997.

5. Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye. Fusion Grammars: A Novel
Approach to the Generation of Graph Languages. In Detlef Plump and Juan
de Lara, editors, Proc. 10th International Conference on Graph Transformation
(ICGT 2017), volume 10373 of Lecture Notes in Computer Science, pages 90–105.
Springer, 2017.

11

6. Lothar Papula. Mathematik für Ingenieure und Naturwissenschaftler. Band 2.
Vieweg & Teubner, 2009. 12. Auflage.

7. A. A. Votyakov and M.A. Frumkin. An algorithm for finding the general integer
solution of a system of linear equations (in russion). In A.A. Fridman, editor,
Issledovaniya po diskretnoi optimizatsii [Studies in Discrete Optimization], pages
128–140, 1976.

8. Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 1986.

12

	Decidability and Complexity of the Membership and Emptiness Problem of Fusion Grammars

