
Graph repair by graph programs?

Annegret Habel, Christian Sandmann

Universität Oldenburg
{habel,sandmann}@informatik.uni-oldenburg.de

Abstract. Model repair is an essential topic in meta-modelling. We con-
sider the problem of graph repair: Given a graph constraint d, we try
to construct a graph program, such that the application to any graph G
yields a graph H satisfying the graph constraint d. We show the existence
of terminating repair programs for a number of satisfiable constraints of
nesting depth ≤ 2.

1 Introduction

In model-driven software engineering the primary artifacts are meta-models,
which have to be consistent wrt. a set of constraints (see e.g. [EEGH15]). To
increase the productivity of software development, it is necessary to automati-
cally detect and resolve inconsistencies arising during the development process,
called model repair (see, e.g. [NEF03,MGC13,NKR17]). Since meta-models can
be represented as graph-like structures [BET12], in this paper, we consider the
problem of graph repair : Given a graph constraint d, we try to construct a graph
program, called repair program, such that the application to any graph G yields
a graph H satisfying the graph constraint d.

Repair problem

Given: A graph constraint d.
Task: Find a graph program P : ∀G⇒P H, H |= d.

constraint d program
construction

program P
∀G⇒P H.H |= d

More specifically, we look for repair programs that are terminating and maxi-
mally preserving, meaning that an input graph is preserved as long as there is
no requirement for non-existence of items.

In this paper, we focus on constraints of nesting depth ≤ 2, in particular of the
form ∀(A,∃ C) meaning that, for all occurrences of the graph A, there exists
an occurrence of the supergraph C, and ∃ (A,@ C), meaning that there exists

? This work is partly supported by the German Research Foundation (DFG), Grants
HA 2936/4-2 and TA 2941/3-2 (Meta-Modeling and Graph Grammars: Generating
Development Environments for Modeling Languages).

an occurrence of the graph A, but, at that place, not an occurrence of the
supergraph C. We show that there are terminating repair programs for

1. constraints of the form ∀(A,∃ C) and ∃ (A,@ C),
2. for the conjunction d1 ∧ d2 provided that there are terminating repair pro-

grams Pi for the subconstraints di (i = 1, 2) and P1 preserves the constraint
d2 or P2 preserves the constraint d1, and

3. for the disjunction d1 ∨ d2 provided that there are terminating repair pro-
grams Pi for some subconstraint di (i ∈ {1, 2}).

We illustrate our approach with Petri nets as the modeling language. We express
properties of Petri nets such as “every place has at most/at least one token”,
“the number of places is less or equal k” by graph conditions. The example is a
simplification of the one in [RAB+18] for typed attributed graphs.

The structure of the paper is as follows. In Section 2, we review the definitions
of graphs, graph conditions, and graph programs. In Section 3, the main section
of the paper, we introduce repair programs and present some constructions of
repair programs for satisfiable constraints of nesting depth ≤ 2. In Section 4, we
present some related concepts. In Section 5, we give a conclusion and mention
some further work.

2 Preliminaries

In the following, we recall the definitions of directed, labelled graphs, graph
conditions, rules, and graph programs [EEPT06,HP09].

A directed, labelled graph consists of a set of nodes and a set of edges where
each edge is equipped with a source and a target node and where each node and
edge is equipped with a label.

Definition 1 (graphs & morphisms). A (directed, labelled) graph (over a la-
bel alphabet L) is a systemG = (VG,EG, sG, tG, lV,G, lE,G) where VG and EG are
finite sets of nodes (or vertices) and edges, sG, tG : EG → VG are total functions
assigning source and target to each edge, and lV,G : VG → L, lE,G : EG → L
are labeling functions. If VG = ∅, then G is the empty graph, denoted by ∅.
A graph is unlabelled, if the label alphabet is a singleton. Given graphs G and
H, a (graph) morphism g : G→ H consists of total functions gV : VG → VH and
gE : EG → EH that preserve sources, targets, and labels, that is, gV◦sG = sH◦gE,
gV ◦ tG = tH ◦ gE, lV,G = lV,H ◦ gV, lE,G = lE,H ◦ gE. The morphism g is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it is
injective and surjective. In the latter case, G and H are isomorphic, which is
denoted by G ∼= H. An injective morphism g : G ↪→ H is an inclusion morphism
if gV(v) = v and gE(e) = e for all v ∈ VG and all e ∈ EG.

Graph conditions are nested constructs, which can be represented as trees of
morphisms equipped with quantifiers and Boolean connectives. Graph conditions
and first-order graph formulas are expressively equivalent [HP09].

2

Definition 2 (graph conditions). A (graph) condition over a graph P is of
the form (a) true or (b) ∃(a, c) where a : P ↪→ C is an inclusion morphism and
c is a condition over C. For conditions c, ci (i ∈ I for some finite index set I1)
over P , ¬c and ∧i∈Ici are conditions over P . Conditions over the empty graph ∅
are called constraints. In the context of rules, conditions are called application
conditions.

Notation. Graph conditions may be written in a more compact form: ∃ a ab-
breviates ∃ (a, true), false abbreviates ¬true and ∀(a, c) abbreviates @ (a,¬c).
The expressions ∨i∈Ici and c ⇒ c′ are defined as usual. For an inclusion mor-
phism a : P ↪→C in a condition, we just depict the codomain C, if the domain
P can be unambiguously inferred.

Definition 3 (semantics). Any injective morphism p : P ↪→ G satisfies true.

An injective morphism p satisfies ∃ (a, c) if
there exists an injective morphism q : C ↪→ G
such that q ◦ a = p and q satisfies c.

P

G

C,a

p q
=

c

|=
)∃ (

An injective morphism p satisfies ¬c if p does not satisfy c, and p satisfies ∧i∈Ici
if p satisfies each ci (i ∈ I). We write p |= c if p satisfies the condition c (over P).
A graph G satisfies a constraint c, G |= c, if the morphism p : ∅ ↪→ G satisfies c.
JcK denotes the class of all graphs satisfying c. A constraint c is satisfiable if there
exists a graph G such that G |= c. A constraint c is valid if all graphs satisfy c.

Two conditions c and c′ over P are equivalent, denoted by c ≡ c′, if for all graphs
G and all injective morphisms p : P ↪→ G, p |= c iff p |= c′. A condition c implies
a condition c′, denoted by c ⇒ c′, if for all graphs and all injective morphisms
p : P ↪→ G, p |= c implies p |= c′.

Constraints can be “shifted” over morphisms into application conditions.

Lemma 1 (Shift [HP09]). There is a Shift-construction such that, for each
condition d over P and for each injective morphism b : P ↪→ R, Shift transforms
d via b into a condition Shift(b, d) over R such that, for each injective morphism
n : P ↪→ H, n ◦ b |= d⇔ n |= Shift(b, d).

Construction. For a condition d over P and an injective morphism b : P ↪→ R,
the condition Shift(b, d) over R is defined as follows.

P

C

R

R′

a a′(0)

b

b′

c

Shift(b, true) := true.
Shift(b,∃ (a, d)) :=

∨
(a′,b′)∈F ∃ (a′,Shift(b′, d)) where

F = {(a′, b′) | b′ ◦ a = a′ ◦ b, a′, b′ inj, (a′, b′) jointly surjective2}
Shift(b,¬d) := ¬Shift(b, d), Shift(b,∧i∈Idi) := ∧i∈IShift(b, di).

1 In this paper, we consider graph conditions with finite index sets.
2 A pair (a′, b′) is jointly surjective if, for each x ∈ R′, there is a preimage y ∈ R with
a′(y) = x or z ∈ C with b′(z) = x.

3

Rules are specified by a pair of inclusion morphisms. For restricting the appli-
cability of rules, the rules are equipped with a left application condition. Such
a rule is applicable with respect to an injective “match” morphism from the
left-hand side of the rule to a graph, if, and only if, the underlying plain rule is
applicable and the match morphism satisfies the left application condition.

Definition 4 (rules and transformations). A rule % = 〈p, ac〉 consists of a
plain rule p = 〈L ←↩ K ↪→ R〉 with inclusion morphisms K ↪→ L and K ↪→ R
and an application condition ac over L. It is non-deleting if L ∼= K and deleting
if L ⊃ K. A rule 〈p, true〉 is abbreviated by p. A direct transformation from a
graph G to a graph H applying rule % requires the following steps:

(1) Find an injective morphism g : L ↪→ G such that g |= ac.
(2) Delete all edges in G−g(L) incident to a node in g(L−K) yielding G′3.
(3) Apply the rule % to G′ at the restricted morphism g′ : L ↪→ G′,

i.e., delete g(L−K) from G′, yielding D and add R−K to D, yielding H.

L K R

DG′ HG
incG′inc incH

g′ d h= (1) (2)
g

ac

We write G ⇒%,g H or G ⇒% H if there exists such a direct transformation.
A transformation is a sequence of direct transformations. A transformation from
G to H by a rule set R is denoted by G⇒∗R H or G⇒∗ H.

Notation. A rule 〈L←↩ K ↪→ R〉 sometimes is denoted by L⇒ R where indexes
in L and R refer to the corresponding nodes.

Remark. In the following, we use special injective rules and injective matches.
For node-deleting rules, we have to allow the deletion of dangling edges, but
we do not use the full power of the SPO-approach. Thus, we speak about the
DPO-approach with deletion of dangling edges.

With every transformation t : G ⇒∗ H a partial morphism can be associated
that “follows” the items of G through the transformation: this morphism is
undefined for all items in G that are removed by t, and maps all other items to
the corresponding items in H.

Definition 5 (track morphism). The track morphism trackG⇒H from G to
H is the partial morphism4 defined by trackG⇒H(x) = incH(inc−1G (x)) if x ∈ D
and undefined otherwise, where incG = inc ◦ incG′ and inc−1G : incG(D) ↪→ D

3 These edges are said to be dangling edges.
4 A partial graph morphism G ⇀ H is an inclusion S ↪→ H such that S ⊆ G.

4

is the inverse of incG. Given a transformation G ⇒∗ H, trackG⇒∗H is de-
fined by induction on the length of the transformation: trackG⇒∗H = iso for
an isomorphism iso : G

∼→H, and trackG⇒∗H = trackG′⇒H ◦ trackG⇒∗G′ for
G⇒∗ H = G⇒∗ G′ ⇒ H.

Graph programs are made of rules with application conditions closed under non-
deterministic choice, sequential composition, and iteration.

Definition 6 (graph programs). (Graph) programs are inductively defined:

(1) Every rule is a program.
(2) Every finite set of programs is a program.
(3) Given programs P and Q, then 〈P ;Q〉 and P ↓ are programs.

The semantics of a program P is a binary relation JP K on graphs:

(1) For every rule %, J%K = {〈G,H〉 | G⇒% H}.
(2) For a finite set S of programs, JSK = ∪P∈SJP K5.
(3) For programs P and Q, J(P ;Q)K = JQK ◦ JP K and JP ↓K = {〈G,H〉 ∈ JP K∗ |
¬∃M. 〈H,M〉 ∈ JP K} where JP K∗ is the reflexive, transitive closure of JP K.

For 〈G,H〉 ∈ JP K, we also write G⇒P H. A program P is terminating if there
is no infinite transformation. For a finite rule set R, Try R denotes the one-fold
application of R, if R is applicable, and the zero-fold application, otherwise.

Programs according to (1) are elementary, (2) are choice programs, the program
〈P ;Q〉 is the sequential composition of P and Q, and P ↓ is the iteration of P .
Programs of the form 〈P ; 〈Q;R〉〉 and 〈〈P ;Q〉;R〉 are considered as equal; by
convention, both can be written as 〈P ;Q;R〉.

3 From graph constraints to repair programs

In this section, we define repair programs and look for terminating repair pro-
grams for graph constraints.

A repair program for a constraint is a graph program with the property that
any application to a graph yields a graph satisfying the constraint. For satisfiable
constraints, it is easy to create such a repair program, e.g., by deleting the input
and creating a graph satisfying the constraint.

We define maximally preserving repair programs where items are preserved
whenever possible. Whenever a graph satisfies a constraint, but the negation
is required, then the graph cannot be repaired without deletions. In this case,
at least as necessary items should be deleted.

5 In particular, for the empty set S, JSK = ∅.

5

Definition 7. For a graph G and a constraint d,

∆(G, d) =

{
minp∈Mor(A,G) |Ext(p)|6 if d = ∃ (A,@ C)
0 otherwise

}
where Mor(A,G) denotes the set of all injective morphisms from A to G and
Ext(p) = {q : C → G | q|A = p} denotes the set of extensions of p : A ↪→ G.

Given a transformation t, pres(t) denotes the number of items in the domain of
the track morphism trackt. Let T denote the set of transformations t : G⇒P H
starting at a graph G. For a program P and a graph G, Pres(P,G) denotes the
maximum of pres(t), i.e., Pres(P,G) = maxt∈T pres(t).

Definition 8 (repair programs). A repair program for a graph constraint c
is a graph program P such that, for all transformations G ⇒P H, H |= c. It is
maximally preserving if for each graph G, Pres(P,G) ≥ size(G)−∆(G, d).

Remark. A repair program P for d is destructive, if it is of the form P =
〈Delete;P∅〉 where Delete deletes the input graph and P∅ applied to the
empty graph yields a graph satisfying d. For destructive programs P , non-empty
graphs G, and constraints d = ∀(A,∃ C), Pres(P,G) = 0, thus, destructive pro-
grams are not maximally preserving.

For nested graph conditions, the nesting depth may be defined as follows.

Definition 9 (nesting depth). The conditions true and false are of nesting
depth 0. If a : P ↪→ C and c is a condition over C of nesting depth i ≥ 0, then
the conditions ∃ (a, c),@ (a, c) are of nesting depth i+ 1.

In the following subsections, we consider constraints of nesting depth ≤ 2. Most
important are the “atomic” constraints ∀(A,∃ C) and ∃ (A,@ C) without con-
junctions and disjunctions. All other atomic constraints of nesting depth ≤ 2
can be expressed with the help of these constraints (see Table 1).

3.1 Constraints of the form ∀(A, ∃ C)

In this subsection, we consider constraints of the form ∀(A,∃ C), with A 6∼= C,
informally meaning that, for all occurrences of the graph A, there exists an
occurrence of the supergraph C. For these constraints, 〈A ⇒ C,@ C〉 ↓ seems
to be an easy and intuitive repair program, but it need not be terminating: By
A ⊂ C, the occurrence of the rule remains preserved, the rule can be applied
infinitely often, and there is an infinite transformation A ⇒ C ⇒ C1 ⇒ C2 . . .
with Ci ⊂ Ci+1 for i ≥ 1.

6 For a set S, |S| denotes the number of elements.

6

Example 1. For ∀(•
1
,∃ •

1
•) meaning that, for every node, there has to

exist a proper outgoing edge, 〈 •
1
⇒ •

1
• ,@ •

1
• 〉 ↓ is a repair program not

creating cycles. Unfortunately, the program is not terminating.

Nevertheless, we use this program as a first step to construct a terminating one:
The program with rules of the form B ⇒ C where A ⊆ B ⊂ C and an application
condition requiring that no larger subgraph B′ of C (∧B′@ B′) occurs and the
shifted condition @ (A ↪→ C) is satisfied, is a terminating repair program.

Theorem 1. For constraints of the form ∀(A,∃ C), with A 6∼= C, a terminating,
maximally preserving repair program can be effectively constructed.

Construction 1. For ∀(A,∃ C), with A 6∼= C, let R↓ with

R = {〈B ⇒ C, acB ∧ ac〉 | A ⊆ B ⊂ C}

where acB =
∧

B′ @ B′,
∧

B′ ranges over all @ B′ with B ⊂ B′ ⊆ C and ac =
Shift(A ↪→ B, @ (A ↪→ C)).

Remark. The rule set R is — up to isomorphism — a finite, non-empty set of
non-deleting rules. By the application condition, each rule can only be applied if
the constraint is not satisfied and no other rule whose left-hand side includes B
and is larger can be applied. By B ⊂ C, the rule set R does not contain identical
rules.

Example 2. For the constraint alltok = ∀(Pl ,∃ (Pl tktoken
)), meaning each

place has a token, we obtain the program R1 ↓, with 7

R1 =

{
〈Pl ⇒ Pl tktoken

,@ (Pl tk)〉
〈Pl tk ⇒ Pl tktoken

,@ (Pl tktoken
) ∧ @ (tk Pl tktoken

)〉

}

This program is terminating: Given a place, the first rule adds a token and an
edge to the token, if there does not exist a place and a token. The second rule
requires the existence of a place and a token, and, if there is no edge from the
place to the token and no edge to another token, then a connecting edge is
added. The first application condition is used for termination: it cannot add an
edge from a place to a token if there is already a connecting edge. The second
application condition forbids the addition of an edge from the place to the token
if there is already a connection to another token.

The following example shows that it may be not enough to repair all violations
in a given graph, because new violations may occur when applying repair rules.
Thus, termination is not trivial.

7 The match of the rule is marked in a blue color.

7

Example 3. Let ∀(•
• •

,∃ •
• •

)8 . Then, the repair program R↓ con-

tains the rule

% = 〈 •
• •

⇒ •
• •

,@ •
• •

∧ @ •
• •

〉.

Applying the rule to the graph below, we obtain the following transformation:

G =

•
• •
• •

⇒
%

•
• •
• •

⇒
%

•
• •
• •

⇒
%

•
• •
• •

There are two matches for the rule % in the graph G. Applying the rule % twice,
yields a new match for %, not already in G.

Proof (of Theorem 1). Let R↓ be the program according to Construction 1.
For simplicity, we do the proof for unlabelled graphs. The proof for labelled
graphs is similar.
R↓ is terminating: Let G ⇒ H be a direct transformation through a rule % =
〈B ⇒ C, acB ∧ ac〉 in R. Then |VB [≤ |VG|. (1) If |VG| < |VC | then |VB | = |VG|
and, by the application condition acB (there is no larger B′ with B ⊂ B′ ⊆ C),
|VC | = |VH |. (2) If |VG| ≥ |VC | and (a) EC = ∅, then |EB | = |EC | and |EG| =
|EH | and, by the application condition acB , the program is terminating. (b) If
EC 6= ∅, then |VB | = |VC | and |VG| = |VH |. Let k denote the maximal number
of parallel edges in C, by the application condition acB , R ↓ adds maximal k
parallel edges in H, thus, |EH | ≤ k · |VH | × |VH |.
R↓ is correct: Let G ⇒R↓ H. By the semantics of ↓, no rule of R is applicable
to H. Thus, for every rule 〈B ⇒ C, acB ∧ ac〉 in R and every injective morphism
h : B ↪→ H, the application condition ac = Shift(A ↪→ B, @ C) with a : A ↪→ C,
b : A ↪→ B is violated, i.e., Shift(A ↪→ B, ∃ C) is satisfied. By the Shift Lemma,
for every morphism p = h◦ b : A→ H, the application condition ∃ C is satisfied.
Consequently, H satisfies the constraint ∀(A,∃ C).

∀h : B ↪→ H.h 6|= Shift(b,@ C)
⇔ ∀h : B ↪→ H.h |= Shift(b,∃ C)
⇔ ∀p : A ↪→ H.p |= ∃ C
⇔ H |= ∀(A,∃ C)

A

B C

H

ab

c
p

h

==

R↓ is maximally preserving : By construction, the rules in R are non-deleting,
i.e. for each graph G, ∆(R↓, G) = 0 and Pres(R↓, G) = size(G)−∆(R↓, G). 2

Fact 1. Let R is the rule set in Construction 1. For constraints of the form ∃ C,
Try R is a terminating, maximally preserving repair program.

8 Undirected edges represent two directed edges in opposite direction.

8

Proof. By Theorem 1, Try R is terminating, correct (If G ⇒Try R H, then, by
inspection ofR, G⇒R H |= ∃ C or H ∼= G |= ∃ C), and maximally preserving.2

3.2 Constraints of the form ∃ (A, @ C)

In this subsection, we consider constraints of the form ∃ (A,@ C), with A 6∼= C,
informally meaning that there exists an occurrence of the graph A, but, at that
place, not an occurrence of the supergraph C. For these constraints, there is an
easy and intuitive program {Pa, 〈C ⇒ B〉 ↓} where the first subprogram is a
repair program for ∃ A and the second subprogram replaces an occurrence of
the graph C by proper subgraphs B of C including A, as long as possible.

To get a more specific repair program, we check whether the constraint @ (A,@ C)
is satisfied, we “mark” an occurrence of A, apply the “marked” ruleset as long
as possible, and, finally, “unmark” the occurrence. We simulate relabelling by
adding loops to nodes carrying the marking and replace edges by edges.

Definition 10 (selection). Let d = ∃ (A,@ C) be a constraint, A ⊆ B ⊂ C
graphs. Then BA and CA denote the A-marked versions, i.e., the graph in which
all items in the subgraph A are additionally labelled by the name of the item.
For a rule p = 〈C ⇒ B〉, pA = 〈CA ⇒ BA〉 is the marked rule, and, for a rule
set R, RA = {pA | p ∈ R} is the marked rule set. The A-restricted program

R↓A= 〈Check; SelectA;RA ↓; UnselectA〉

is the program where Check = 〈∅ ⇒ ∅,¬d〉, SelectA = 〈A ⇒ AA〉, RA is the
marked version of R, and UnselectA is the inverse rule9 of SelectA.

Remark. The number of steps to obtain a satisfying graph depends from the
chosen matches. E.g., for a constraint of the form ∃ (A,@ C), there might be
some matches, where many occurrences of C have to be removed and matches
with only one occurrence of C. For some matches, “dangling edges” have to be
removed and for others, there are no dangling edges.

Theorem 2. For constraints of the form ∃ (A,@ C) with A 6∼= C, a terminating,
maximally preserving repair program can be effectively constructed.

Construction 2. For a constraint ∃ (A,@ C) with A 6∼= C, let {Pa,R↓A} be the
choice program where Pa is the repair program for ∃ A according to Fact 1 and
R↓A is the A-restricted program with

R := {〈C ⇒ B〉 | C ⊃ B ⊇ A and (*)}.

where (*) |EC | = |EB |+ 1 or |EC | = |EB | and |VC | = |VB |+ 1.

9 For a plain rule p = 〈L⇒ R〉, p−1 = 〈R⇒ L〉 is the inverse rule of p.

9

Remark. The rule set R is — up to isomorphism — a finite, non-empty set of
deleting rules. By B ⊂ C, the rule set R does not contain identical rules. The
requirement (*) guarantees that as few nodes as necessary are deleted. Consider,

for example, the constraint ∃ (•
1
•
2
,@ (•

1
•
2
•), meaning that there are two

nodes, but no connecting edge and an additional node. In this case, a repair
program can delete an edge instead of deleting a node.

Example 4. For 1place = @ (Pl Pl), the program 〈Pl Pl ⇒ Pl 〉 ↓ is
a terminating repair program. The program works as follows: Whenever there
are two places, one place together with its incident edges is deleted, as long as
possible.

Proof (of Theorem 2). Let P be the program according to Construction 2.

P is terminating : By construction, Pa is terminating. Moreover, each rule in R
is deleting. Thus, for every finite graph G, there is no infinite transformation.

P is correct : Let G ⇒P H. Application of the program Pa to G yields graph
satisfying ∃ A and ∃ (A,@ C). Application of the program R ↓A to G yields a
graph H satisfying ∃ (A,@ C): By the semantics of ↓, no rule of RA is applicable
to HA (see below), i.e., for every rule 〈CA ⇒ BA〉 in RA, there is no injective
morphism qA : CA ↪→ HA and no injective morphism q : C ↪→ H, such that
q ◦ a = h, i.e., h |= @ (A ↪→ C) and H |= ∃ (A,@ C).

A

BC

BACA

HAH

a b

h

−
q

−
qA

SelectA

=

P is maximally preserving: The programs Pa, Check, SelectA, UnselectA pre-
serve the items of the graph G. The number of repairs is bounded by the number
of extentions of p : A ↪→ G, i.e., (*) pres(t) ≥ size(G) − |Ext(p)|. By defini-
tion of ∆(G, d), for each morphism p : A ↪→ G, ∆(G, d) ≤ |Ext(p)| and (**)
size(G)−∆(G, d) ≥ size(G)− |Ext(p)|. Thus, we have

Pres(P,G) = maxt′∈T pres(t′) (Def of Pres(P,G))
≥ pres(t) (Def of max)
≥ size(G)−|Ext(p)| (*)
≥ size(G)−∆(G, d) (**)

2

Example 5. Let d = ∃ (•
1
,@ •

1
•). For the graph G = •

1
• and the

morphism p form •
1

to the node 1 in G, there are two extensions q from •
1
•

10

to G, thus ∆(G, d) = 2. There are transformations t : G ⇒P H to a graph H
satisfying d with pres(t) = size(G)− 2 as well as one with pres(t) = size(G)− 1,
i.e., Pres(P,G) = size(G)−1 > size(G)−∆(G, d).

Fact 2. Let R be the rule set in Construction 2. For constraints of the form
@ C, R↓ is a terminating, maximally preserving repair program.

Proof. By Theorem 2 and the equivalence @ C ≡ ∃ (∅,@ C), R ↓∅= R ↓ is a
terminating, maximally preserving repair program for @ C. 2

Fact 3. For all satisfiable, non-valid atomic constraints of nesting depth ≤ 2,
there are terminating, maximally preserving repair programs (see Table 1).

constraint program

∃ C≡ ∀(∅, ∃ C) Try R Fact 1
@ C≡ ∃ (∅, @ C) R+↓ Fact 2
∃ (A,∃ C)≡ ∃ C Try R Fact 1
∃ (A, @ C) {Pa,R+ ↓A} Thm 2
@ (A,∃ C)≡ @ C R+↓ Fact 2
@ (A, @ C)≡ ∀(A,∃ C) R↓ Thm 1

Table 1. Satisfiable, non-valid constraints of nesting depth ≤ 2 with repair programs

3.3 Conjunctive constraints

For conjunctive constraints, we make use of the divide and conquer method:

(1) Given a constraint, transform it into an equivalent one in normal form.
(2) Construct repair programs for the subconditions.
(3) Compose the repair programs for the subconditions to a repair program for

the more complex condition.

Repair programs Pi for constraints di (i = 1, 2) can be sequentially composed to
a repair program 〈P1;P2〉 provided that P2 preserves the constraint d1.

Definition 11 (constraint preservation). A program P is d-preserving if for
every transformation G⇒P H, G |= d implies H |= d.

Lemma 2 (Repair). If Pi are terminating repair programs for di (i = 1, 2) and
P2 is d1-preserving, then 〈P1;P2〉 is a terminating repair program for d1 ∧ d2.

11

Proof. By termination of the programs P1 and P2, the program 〈P1;P2〉 is
terminating. Since Pi is a repair program for di (i = 1, 2) and P2 is d1-preserving,
for every transformation G ⇒P1 H ⇒P2 M , H |= d1 and M |= d1 ∧ d2, i.e.,
〈P1;P2〉 is a repair program for d1 ∧ d2. 2

There are examples where Pi are repair programs for di (i = 1, 2), but neither
P2 is d1-preserving nor P1 is d2-preserving.

Example 6. Consider the constraints alltok = ∀(Pl ,∃ (Pl tktoken
)) and

tok2places = @ (Pl tk Pltoken token
), meaning that each place has a token but a

token does not have two places. There are repair programs R1 ↓ for alltok (see
Example 2) and R2 ↓ for tok2places where R2 contains the rule

〈Pl tk Pltoken token ⇒ Pl tk Pltoken 〉. Then R2 ↓ does not preserve alltok and
vice versa. By Lemma 2, we cannot conclude that 〈R1 ↓;R2 ↓〉 is a repair
program for the conjunctive constraint d = alltok ∧ tok2places.

If every rule in P is constraint-preserving, then P is constraint-preserving. More-
over, constraint preservation can be characterized with the help of strongest
postconditions. For the definition and construction see e.g. [HP09].

Lemma 3 (characterization). A program P is d-preserving iff the strongest
postcondition sp(P, d) implies d.

Proof. “⇒”: If P is d-preserving, then, for every transformation G ⇒P H,
G |= d impliesH |= d. By definition of the strongest postcondition,H |= sp(P, d).
Consequently, sp(P, d) implies d. ‘⇐”: If sp(P, d) implies d, then G⇒P H, G |= d
implies H |= sp(P, d)⇒ d, i.e. H |= d. 2

Remark. For repair programs, one may believe the following: Given repair
programs Pi for di (i = 1, 2), the program 〈P1;P d1

2 〉 where P d1
2 is the program

of d1-preserving rules of P2, is a repair program. Unfortunately, in general, this
is not true because P d1

2 is not a repair program for the constraint d2.

Example 7. Consider the constraints from example 6, with the respective repair
programs R1 ↓ for alltok and R2 ↓ for tok2places. The tok2places-preserving
repair program for alltok is R′1 ↓, where R1 contains the rule 〈 tk Pl ⇒
tk Pltoken

,@ (Pl tk Pltoken
)∧ . . .〉. The repair program adds an edge between

a place and a token, only if the token has no place. By the application condi-
tion, R′1 is not applicable to arbitrary graphs, thus 〈R2 ↓;R′1 ↓〉 is not a repair
program for tok2places ∧ alltok.

Remark. If Ri↓ is a repair program for di (i = 1, 2) the program 〈R1↓;R2↓〉
is a repair program for d1 ∧ d2 provided P2 is d1-preserving. The program R↓
built from the union R = R1∪R2 of the rule sets is a repair program for d1∧d2
provided that more restrictive requirements are satisfied.

12

3.4 Disjunctive constraints

Every repair program for a conjunctive constraint is also a repair program for
the corresponding disjunctive constraint.

Lemma 4 (Repair).

1. If P is a repair program for d and d⇒ d′, then P is a repair program for d′.
2. If Pi are repair programs for di (i = 1, 2), then P1, P2, and {P1, P2} are

repair programs for d1 ∨ d2.

Proof. 1. If P is a repair program for d and d⇒ d′, then for every transformation
G⇒P H, H |= d⇒ d′, i.e., P is a repair program for d′.
2. By statement 1, Pi (i = 1, 2) is a repair program for d1 ∨ d2. By termination
of P1 and P2, the program {P1, P2} is terminating. Since Pi is a repair program
for di (i = 1, 2), for every transformation G ⇒Pi

H, H |= di, i.e., {P1, P2} is a
repair program for d1 ∨ d2. 2

4 Related concepts

In this section, we present some related concepts of rule-based programs gen-
erated from a constraint. We compare proven correctness, completeness, in the
sense that for all first-order constraints a program can be automatically gener-
ated, and termination of the program for all cases.

In Pennemann [Pen09], an algorithm is given that generates for each graph
condition c a non-determistic program SeekSat(c), which will find a valid graph
for every satisfiable condition. Starting from the empty graph, the algorithm
adds items, progressing to a valid graph which satisfies the constraint. Since
negative conditions are refuted, the program needs backtracking. The algorithm
is correct and complete, but it is not guaranteed to terminate in general. For the
non-nested fragment of conditions, SeekSat is guaranteed to terminate.

constraint c program
construction

program
SeekSat(c)

In Nassar et al. [NKR17], a rule-based approach to support a modeler in au-
tomatically trimming and completing EMF models and thereby resolving their
cardinality violations is proposed. For that, repair rules are automatically gen-
erated from multiplicity constraints imposed by a given meta-model.

The control flow of the algorithm consists of two main phases:

(1) Model trimming eliminates supernumerous model elements.
(2) Model completion adds required model elements.

13

It is shown that both of the algorithms are correct, and, for fully finitely instan-
tiable type graphs, the model completion algorithm terminates. The rules are
designed to respect EMF constraints, which are in general not expressible with
nested conditions.

In Nentwich et al. [NEF03] a repair framework for inconsistent distributed UML
documents is presented. Given a first order formula, the algorithm automati-
cally creates a set of repair actions from which the user can choose, when an
inconsistency occurs. These repair actions can either delete, add or change a
model document. It can be shown, that the repair actions are correct and com-
plete. The problem of repair cycles is left for future work. Since, in general, it is
undecidable, if a constraint is satisfiable, the algorithm may not terminate.

In Mens et al. [PSM15], a regression planner is used to automatically generate
sequences of repair actions that transform a model with inconsistencies to a
valid model. The initial state of the planner is the invalid model, represented
as logical formula, the accepting state is a condition specifying the abscence
of inconsistencies. Then, a recursive best-first search is used to find the best
suitable plan for resolving the inconsistencies. The correctness of the algorithm
is not proven, but the approach is evaluated through tests on different UML
models.

correctness completeness termination
this paper + - +
[Pen09] + + -
[NKR17] + - -
[NEF03] + + -
[PSM15] (+) ? ?

5 Conclusion

In this paper, we have focused on constraints of nesting depth ≤ 2 and have
presented terminating repair programs

(1) for all satisfiable constraints without conjunctions & disjunctions (Thms 1, 2)
(2) for conjunctions d1∧d2 provided that there are terminating repair programs

Pi for di (i = 1, 2) and one program preserves the other constraint (Lemma 2)
(3) for disjunctions d1 ∨ d2 provided that there is a terminating repair program

Pi for di for some i ∈ {1, 2} (Lemma 4).

Essential is the following:

(1) The repair programs are directly derived from the constraints.
(2) Dangling edges are deleted before a rule is applied.
(3) Correctness. Correctness is proven.
(4) Termination. If we look for termination, we get cycles.

If we try to avoid cycles, we get non-termination.

14

(5) Maximal Preservation for atomic constraints of nesting depth ≤ 2.

Further topics could be

(1) Generalization to constraints of arbitrary nesting depth.
(2) Generalization to repair programs with restricted set of input graphs, e.g.

described by a constraint.
(3) Construction of a set of repair programs instead of one (as e.g. in [NEF03]).
(4) Use of graph repair for model repair. In particular, what can be done to get

a (terminating) repair program that does not create cycles?

Acknowledgements. We are grateful to Jens Kosiol, Nebras Nassar, Christoph
Peuser, and the anonymous reviewers for their helpful comments to this paper.

References

BET12. Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foundation
of consistent emf model transformations by algebraic graph transformation.
Software and System Modeling, 11(2):227–250, 2012.

EEGH15. Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph
and Model Transformation - General Framework and Applications. Mono-
graphs in Theoretical Computer Science. Springer, 2015.

EEPT06. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of Algebraic Graph Transformation. EATCS Monographs of The-
oretical Computer Science. Springer, 2006.

HP09. Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level trans-
formation systems relative to nested conditions. Mathematical Structures in
Computer Science, 19:245–296, 2009.

MGC13. Nuno Macedo, Tiago Guimarães, and Alcino Cunha. Model repair and
transformation with echo. In Automated Software Engineering, (ASE 2013),
pages 694–697. IEEE, 2013.

NEF03. Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Con-
sistency management with repair actions. In Software Engineering, pages
455–464. IEEE Computer Society, 2003.

NKR17. Nebras Nassar, Jens Kosiol, and Hendrik Radke. Rule-based repair of emf
models: Formalization and correctness proof. In Graph Computation Models
(GCM 2017), 2017. https://www.uni-marburg.de/fb12/arbeitsgruppen/
swt/forschung/publikationen/2017/NKR17.pdf.

Pen09. Karl-Heinz Pennemann. Development of Correct Graph Transformation Sys-
tems. PhD thesis, Universität Oldenburg, 2009.

PSM15. Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens. Resolving
model inconsistencies using automated regression planning. Software and
System Modeling, 14(1):461–481, 2015.

RAB+18. Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Habel, and
Grabriele Taentzer. Translating essential OCL invariants to nested graph
constraints for generating nstances of meta-models. Science of Computer
Programming, 152:38–62, 2018.

15

https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2017/NKR17.pdf
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2017/NKR17.pdf

	Graph repair by graph programs

