
Double-Pushout Rewriting in Context

Michael Löwe

FHDW Hannover, Freundallee 15, 30173

Abstract Double-pushout rewriting (DPO) is the most popular algeb-
raic approach to graph transformation. Most of its theory has been de-
veloped for linear rules, which allow deletion, preservation, and addition
of vertices and edges only. Deletion takes place in a careful and cir-
cumspect way: a double pushout derivation does never delete vertices
or edges which are not in the image of the applied match. Due to these
restrictions, every DPO-rewrite is invertible. In this paper, we extend
the DPO-approach to non-linear and still invertible rules. Some model
transformation examples show that the extension is worthwhile from the
practical point of view. And there is a good chance for the extension of
the existing theory. In this paper, we investigate parallel independence.

1 Introduction

Double-pushout rewriting (DPO) is the most popular algebraic approach to
graph and model transformation [3,4]. It can be formulated on a purely cat-
egorical level.

Definition 1 (DPO-rewriting). A rule % = (l : K ⇢ L, r : K ⇢ R) is a span
of monomorphisms. A match m : L ! G for rule % in an object G is a morphism
from %’s left-hand side to G. Rule % can be applied at match m, if there are two
pushout diagrams as depicted in Figure 1, i. e. (m, g) and (p, h) are pushouts of
(l, n) and (r, n) resp. The two pushouts constitute a direct derivation.

L K R

G D H

m (PO) n

l r

p(PO)

g

h

Figure 1. Double-pushout rewrite

By definition, every direct derivation is reversible: If %�1 = (r, l) denotes the
inverse rule for a rule % = (r, l), we obtain for every direct derivation from G to
H using rule %, that there is a direct derivation using %�1 from H to G.

Figure 2. Indeterministic double-pushout rewrite

Furthermore, the pushout complement object D constructed as the intermediate
object in a direct derivation is unique (up to isomorphism) in suitable categories.1
This uniqueness property is lost, if the rule’s left-hand sides are not restricted to
monomorphisms, i. e. if we allow so-called non-linear left-hand sides. An example
in the category of graphs is depicted in Figure 2. The morphism l : K ! L is
a rule’s left-hand side which is not monic and splits a vertex into two particles.
The depicted match m : L ! G allows 8 different pushout complements and
3 pairwise non-isomorphic variants.2 The concrete distribution of the adjacent
edges of the split vertex is not specified by the rule and can be chosen arbitrarily
by the direct derivation. Thus, the effect of the rule is underspecified.
For a deterministic effect of such rules, we have to specify how the context (ad-
jacent objects) of split items shall be handled. We can do this, if we address the
context explicitly in the rule itself and specify exactly where the context shall be
attached to. Two of such specifications for the example of Figure 2 are depicted
in Figure 3. In the left part of Figure 3, the context specification in K and L
(thick grey arrows without source or target vertex) states that all incoming and
all outgoing context edges shall be attached to the split-particle “1”. Thus, the
corresponding direct derivation picks D1 (compare Figure 2) from the choice of
possible pushout complements. In the right part of Figure 3, the context specific-
ation in K’ and L (again thick grey arrows) states that all incoming context edges
shall be attached to split-particle “2” whereas all outgoing context edges shall
be attached to the split-particle “1”. Thus, the corresponding direct derivation
picks D4 (compare Figure 2) from the choice of possible pushout complements.
The context handling we introduced on the intuitive level in Figure 3 cannot
single out each derivation (all the possible pushout complements) of Figure 2,
since all incoming context edges as well as all outgoing context edges of a split
vertex are handled in an uniform way. For the sample situation of Figure 2, we

1 Adhesive categories, details see below.
2 The pushout complements D2 and D3 as well D6 and D7 produce isomorphic objects

but differ in the assignments of edges to G, i. e. g2 6= g3 and g6 6= g7. The complement
pairs D1 and D8, D4 and D5, as well as D2/3 and D6/7 are isomorphic and can only
be distinguished if we fix the embedding of K.

2

Figure 3. Handling of context

can only distinguish rewrites picking the complements D1, D4, D5, and D8. As we
will see in the sample Section 4, this is not a major drawback wrt. applicability.
The context specification cannot copy context items or distribute them inde-
terministically. If we specified in the example that all outgoing edges shall be
attached to particle “1” and all incoming edges shall be attached to both particles
“1” and “2”, there are two possible interpretations: (1) incoming edges shall be
’copied’ to both particles or (2) incoming edges can be attached arbitrarily. In
the first case, there is no suitable pushout complement (compare possibilities D1

– D8 in Figure 2); in the second case, the rewrite is underspecified again, since
D1 and D4 are non-isomorphic pushout complements satisfying the specification.
But not only non-linear left-hand sides of rewrite rules cause problems in the
double-pushout approach. We obtain some indeterminism as well, if we admit
non-linear right-hand sides, i. e. if we do not restrict the rules’ right-hand sides
to monomorphisms. These problems are not concerned with the rewrite itself,
since pushouts are uniquely determined (up to isomorphism) for arbitrary pairs
of morphisms. The inverse rule (r, l) for a rule (l, r) with non-monic r, however,
has a non-linear left-hand side and produces the sort of indeterminism which we
observed above for example in Figure 2.
For a rewrite example with a non-linear right-hand side see Figure 4: the vertices
“1” and “2” are mapped to the same vertex by the rule’s right-hand side r :
K ! R. A direct derivation with that rule merges the two matched vertices and
connects all edges (incoming and outgoing) of these vertices (“1” and “2” in D1)
to the merged result vertex in H, compare morphism h1 : D1 ! H in Figure 4.
If we apply the inverse rule (r, l) at the induced co-match p : R ! H, we
again obtain several different pushout complements as in Figure 2. Among these
pushout complements is the “original” one, namely D1, that was used in the
derivation that lead to the co-match p. But if we forgot the derivation structure
and remembered the resulting co-match only, we are not able to choose the
correct inverse derivation (among the 8 possible choices). This means that the
information about the merging that took place in the derivation step is stored
in the direct derivation only. Knowing the rule and the induced co-match is not
sufficient to construct the compensating inverse derivation.

3

Figure 4. Indeterministic inverse rewrite

Again, an explicit specification of context handling can help making rules and
their inverse rules deterministic. The information about the merging that took
place in Figure 4 can be stored in the rule itself, if we use the context specification
of K in the left part of Figure 3. With this ’context decoration’, the rule and
the induced co-match carry enough information to uniquely determine D1 as the
intermediate object for the compensating inverse derivation.
In this paper, we formalise the sort of context specification which we inform-
ally introduced above in Figure 3. For this purpose, we borrow and specialise
constructions and mechanisms from AGREE-rewriting [1] and from rewriting
in span categories [12] in Section 2. In Section 3, we show that the new rewrite
construction is a conservative extension of double-pushout rewriting with left-
and right-linear rules. Section 4 demonstrates the applicability of the introduced
rewrite mechanism in the field of model transformation. Section 5 provides first
theoretical results wrt. parallel independence which demonstrates that theoret-
ical results for the DPO-approach are very likely to carry over to the extended
rewrite mechanism. Finally, the conclusion provides a preview of future research.

2 DPO-Rewriting in Context

The theory for double-pushout rewriting has been formulated in adhesive cat-
egories [3,11]. We adopt this basic requirement for the constructions and results
presented below for double-pushout rewriting in context, which we call DPO-C.

Definition 2 (Adhesive category). A category is adhesive if

1. it has all pullbacks and
2. it has pushouts along monomorphisms which are all van-Kampen squares.

A pushout (f 0 : B ! D, g0 : C ! D) of a span (g : A ! B, f : A ! C) is
a van-Kampen square, if, for every commutative diagram as depicted in the left
part of Figure 5 in which sub-diagrams (2) and (3) are pullbacks, the following

4

B0 A0

B A A• X

D C A D

D0 C0

(4)

(2)

f

0
h

hB

(3) fh

gh

hA

(1)f

0
f

g

(PB)

(m,f)•

(5)

g

0
⌘A

f

m

hD hC

g

0
h

Figure 5. Adhesivity, hereditariness, and partial arrow classifier

compatibility of pushouts and pullbacks is satisfied: the pair (f 0
h, g

0
h) is pushout

of the span (gh, fh), if and only if sub-diagrams (4) and (5) are pullbacks.

As we said in the introduction, DPO-C borrows major ingredients from AGREE-
rewriting. A central issue is the existence of partial arrow classifiers.

Definition 3 (Partial arrow classifiers). A category has partial arrow clas-
sifiers, if there is monic ⌘A : A ⇢ A• for every object A satisfying: For every
pair (m : D ⇢ X, f : D ! A) of morphisms with monic m, there is a unique
morphism (m, f)• : X ! A• such that (m,f) is the pullback of (⌘A, (m, f)•),
compare right part of Figure 5. In the following, the unique morphism (m, f)• is
also called totalisation of (m, f). We abbreviate (m, idA)

• by m• and obtain for
this special case where m : A ⇢ X is monic and f = idA : A ! A: m• �m = ⌘A.

Fact 4 (Classifier). There are well-known facts for partial arrow classifiers:

1. If f : D ⇢ A is monic, (⌘D, f)• is monic.
2. If c : C ⇢ B, b : B ! A, and a : C ⇢ A are morphisms with monic c and

a, then (c, idC) is pullback of (a, b) and b � c = a, if and only if c• = a• � b.
3. All pushouts are hereditary:3 Pushout (f 0, g0) of (g, f) in sub-diagram (1)

of Figure 5 is hereditary, if all commutative situations as in the left part of
Figure 5 where sub-diagrams (2) and (3) are pullbacks and hB and hC are
monic satisfy: (f 0

h, g
0
h) is pushout of (gh, fh), if and only if sub-diagrams (4)

and (5) are pullbacks and hD is monic.

Almost all categories which are used in graph transformation are adhesive and
possess partial arrow classifiers. Examples are graphs, i. e. algebras and homo-
morphisms wrt. the signature G depicted in Figure 6, and the simplified object-
oriented class models, i. e. algebras and homomorphisms wrt. the signature M
depicted in Figure 6, which we use for the sample transformations in Section 4.
Figure 7 depicts three sample partial arrow classifiers in G: (1) for a single vertex,
(2) for a discrete graph with two vertices, and (3) for a graph with two vertices,
a loop, and an edge between the vertices. The graph A that is classified is
painted black, the grey parts are added by the classifier A•, and the classifying
3 Compare [10].

5

G(raph) = sorts V(ertex) [painted as: •], E(dge) [painted as: !]
opns s(ource), t(arget): E �! V

M(odel) = sorts T(ype) [painted as: �],
I(nheritance) [painted as: _],
A(ssociation) [painted as: 99K]

opns c(hild), p(arent): I �! T

o(wner), t(arget): A �! T

Figure 6. Graphs and simple object-oriented models

monomorphism is the inclusion. The classifier provides the additional structure
that is needed to uniquely map the objects that are not in the image of m
in arbitrarily given pair (m : D ⇢ X, f : D ! A). Note that the additional
structure that the classifier adds to a classified graph does not differ, if we change
the number of edges only, compare (2) and (3) in Figure 7.

Figure 7. Sample partial arrow classifiers in the category G

Figure 8 shows two sample classifiers in M: (S) for a model with a single type C
and (P) for a model with a pair of types C and C’.4 Again, the classified models
are painted black, the structure added by the classifier is painted grey, and the
classifier is the inclusion homomorphism. (Arrows with two heads abbreviate two
arrows, namely one in each direction.)
According to Definition 3, the classifying M-homomorphism ⌘S : S ⇢ S• in Fig-
ure 8 can be interpreted as follows: For any M-algebra A and an assignment f for
a subset T of the types in A to the classified type C in S, i. e. f : T ! S and
✓T : T ,! A, there is a unique way to extend this assignment to a homomorph-
ism f• : A ! S•, namely by mapping all types outside T to the ’grey’ type and
all inheritance relations and association to the uniquely available suitable ’grey’
relations in S. Therefore, S provides the sufficient and necessary structure to
map the context of T to S. And this extension of f to f• [or more precisely to
(✓T , f)•] has the property that the pair (✓T , f) is pullback of (⌘S, f•). This ad-
ditional property/requirement of partial arrow classifiers is essential. It prevents
4 Inheritance relations and associations in the classified model do not change the

structure that is added by the classifier. The classifier structure depends on the
(number of) types only.

6

Figure 8. Sample partial arrow classifiers in the category M

that, for the special case that T = ; and f is the empty mapping, some type in
A is mapped to the type C in S by (;, ;)•.
The partial arrow classifier for given M-algebra A is constructed as follows:
(1) Add a Type-element ?. (2) For every pair (t, t0) of T-elements, add a I-element
I?t

t0 with t0 = c(I?t
t0) and t = p(I?t

t0) and A-element A?t
t0 with t0 = o(A?t

t0) and
t = t(A?t

t0). The added type ? is called the undefined type and the I- and A-loop
added on this type are called completely undefined I- and A-edge respectively.

Assumption 5 (Basic category). For the rest of the paper, we assume an
adhesive category with partial arrow classifiers.

For this sort of categories, we know the following facts [11]:

Fact 6 (Properties of the underlying category).

1. Pushouts along monomorphisms are pullbacks.
2. Pushouts preserve monomorphisms.
3. Pushout of intersection is union: If (x : X ⇢ Z, y : Y ⇢ Z) is a co-

span of monomorphisms, (x0 : I ⇢ Y, y0 : I ⇢ X) its pullback span, and
(x⇤ : X ⇢ U, y⇤ : Y ⇢ U) the pushout of (x0, y0), then the unique morphism
u : U ⇢ Z with u � x⇤ = x and u � y⇤ = y is monic, compare Figure 9.

Z U X

Y I

u

x

(PO)

x

⇤

y

y

⇤

x

0

y

0

Figure 9. Union of intersection

Partial arrow classifier constructions have been successfully applied in AGREE-
rewriting [1] in order to control the deletion and copy process of context items
in a rewrite which can be stipulated by non-linear left-hand sides of rules. For a

7

L• R•

L
C

C R
C

L K R

c

•
l

(PO) (PO)

lc rc

c

•
r

⌘L

cl

l

c

r

⌘R

cr

Figure 10. DPO-C rule

double-pushout semantics, we need to restrict the AGREE-rewriting mechanism:
context items must not be copied nor deleted, they can only be distributed to
split particles, compare motivating examples in the introduction.

Definition 7 (DPO-C-rule). A rule (l : K ! L, c : K ⇢ C, r : K ! R) is a
triple of morphisms such that the context specification c is monic and, given the
pushouts (cl : L ⇢ LC , lc : C ! LC) and (cr : R ⇢ RC , rc : C ! RC) of (l, c)
and (r, c) respectively, the morphisms c•l and c•r are monic, compare Figure 10.5

DPO-C rules are special AGREE-rules. The special rule format makes sure that
items in LC which are not in L, have a ’unique preimage’ under lc. In the category
G of graphs for example, we cannot choose C = K• and c = ⌘K , if there are
vertices v1 6= v2 with l(v1) = l(v2). In this case, the pushout of l and ⌘K results
in a graph with at least 4 context loops on l(v1) and this graph is not a sub-graph
of L•, which has a one loop only, compare (1) and (2) in Fig. 7. The symmetric
restriction of the right side will ensure reversibility of rewrites.

Definition 8 (DPO-C-match and -derivation). Given rule � = (l : K !
L, c : K ⇢ C, r : K ! R), a monomorphism m : L ⇢ G is a match, if
the following match condition is satisfied: The morphism m• : G ! L• factors
through LC , i. e. there is m0 : G ! LC such that c•l �m0 = m•.
A derivation with rule � at match m is constructed as follows, compare Figure 11:

1. Construct pullback (g : D ! G,n0 : D ! C) of (m0 : G ! LC , lc : C ! LC).
2. Let n : K ⇢ D be the unique mediating morphism for this pullback for

(m� l, c). By pullback decomposition6 and Fact 6(1) for pushout (lc, cl), (l, n)
is pullback of (g,m). Since pullbacks preserve monomorphisms, n is monic.

3. Construct pushout (h : D ! H, p : R ⇢ H) of (n : K ⇢ D, r : K ! R).
The morphism p is monic by Fact 6(2).

Remarks. Note that we restrict matches to monomorphisms.7 The morphism m0

which satisfies the matching condition is unique, if it exists, since c•l is monic.
The morphism n can be constructed in Step 2 of Definition 8, since c•l �m0 �m =
m• �m = ⌘L = c•l � cl implies m0 �m = cl due to c•l being monic.
5 The pushout morphisms c

l

and c
r

are monic by Fact6 (2).
6 Compare Appendix A.
7 Therefore, the identification condition for rule applicability [9] does not matter here.

8

L• R•

L
C

C R
C

L K R

G D H

c

•
l

(c,l)•

lc rc

c

•
r

m

⌘L

cl

(PO)
n

l

c

r

p

⌘R

cr

m

•

m

0

g

h

n

0
p

0

Figure 11. DPO-C match and derivation

The match condition in Definition 8 formulates a negative application condition
as in [8]. Especially the dangling condition of double pushout rewriting in the
category G of graphs [9] is reformulated this way: if the rule’s left-hand side
l : K ! L is not epic on vertices, there is vertex v without pre-image under l.
Since LC is pushout, this means that cl(v) can only have adjacent edges that
have pre-images under cl. If there is an edge adjacent to m(v) without pre-image
under m, this edge ’is’ not in L and not in LC , it is dangling, and it cannot be
mapped by m0 to any edge in LC in order to satisfy the match condition.
The rewrite mechanism in Def. 8 is a special case of AGREE-rewriting: If (g, h)
is DPO-C trace of DPO-C rule (l, c, r) at match m, then it is also AGREE
trace of AGREE rule (l, c, r) at m.8 The rule restriction of Def. 7 and the match
condition of Def. 8, however, tame the ’AGREE-tiger’ such that (1) items outside
the match cannot be deleted nor copied and (2) irreversible merging is avoided.

3 Analysis of DPO-C derivations

In this section, we analyse the properties of DPO-C-derivations. Especially, we
investigate reversibility and show that the DPO-C-approach is a conservative ex-
tension of the DPO-approach with left- and right-linear rules at monic matches.

Proposition 9 (Determinism). DPO-C-rewrites are deterministic.9

This result justifies the following notation:

Notation 10 (Deterministic rewrite). In a derivation with rule � at match
m as in Def. 8, the result H is denoted by �@m, the span (g, h) is called the
trace, written � hmi, and morphism p constitutes the co-match, written m h�i.
8 Since (id

L

, c
l

) and (c, l) are pullbacks of (⌘
L

, c•
l

) resp. (l
c

, c
l

) by Fact 6 (1) and, there-
fore, (l, c) is pullback of (c•

l

� l
c

, ⌘
L

), we have that c•
l

� l
c

= (c, l)•. Since c•
l

is monic,
(id

G

,m0) is pullback of (c•
l

,m•) and (n0, g) is pullback of (m•, c•
l

� l
c

).
9 For a proof, see Appendix B.1.

9

Proposition 11 (Rewrite properties). Consider a derivation with rule � =
(l, c, r) at match m : L ⇢ G as depicted in Figure 11. The participating sub-
diagrams have the following properties:10

1. (m, idL) and (n, idK) are pullback of (m0, cl) and (n0, c) respectively.
2. (m, g) and (m0, lc) are pushouts of (l, n) and (g, n0) respectively.
3. If p0 : H ! RC is the unique morphism for pushout (p, h) providing p0�p = cr

and p0 � h = rc � n0, then
(a) (h, n0) and (p, idR) are pullbacks of (rc, p0) and (p0, cr) respectively and
(b) (rc, p0) is pushout of (n0, h).

Thus, every square in Figure 11 is pushout and pullback. Therefore, DPO-C-
rewriting could also be called triple double-pushout transformation.

Corollary 12 (Reversibility). Every DPO-C-rewrite is reversible: if (g, h) is
trace and p co-match of the application of rule (l, c, r) at match m, then (h, g) is
the trace and m the co-match of applying the inverse rule (r, c, l) at match p.11

We close this section by showing that standard DPO-rewriting with left- and
right-linear rules is a special case of DPO-C-derivations.

Definition 13 (DPO-simulation). The DPO-C-simulation of a left- and right-
linear DPO-rule % = (l : K ⇢ L, r : K ⇢ R) is the triple �% = (l, ⌘K , r).

Proposition 14 (DPO-simulation). DPO-C-simulations are DPO-C-rules.

Proof. We have to show the conditions of Definition 7. For this purpose, consider
Figure 12, where ul and ur are the unique morphisms providing (i)ul � cl = ⌘L,
(ii)ul � lc = (⌘k, l)•, (iii)ur � cr = ⌘R, and (iv)ur � rc = (⌘k, r)•. By Fact 4(1),
(⌘k, l)• and (⌘k, r)• are monic and, by Fact 6(3), ul and ur are monic. Equations
(i) and (iii) and ul and ur being monic implies that (cl, idL) and (cr, idR) are
pullbacks of (ul, ⌘L) and (ur, ⌘R) respectively. Thus, ul = c•l and ur = c•r .

Theorem 15 (DPO-extension). If % hmi and m h%i are trace and co-match
of a DPO-derivation with linear rule %, then �%hmi = % hmi and m h�%i = m h%i.

Proof. Consider Figure 12 where the two bottom pushouts constitute a DPO-
derivation with left- and right-linear rule (l, r). Then there is n• : D ! K•

such that (n, idK) is pullback of (n•, ⌘K) and especially n• � n = ⌘K . Since
(m, g) is pushout, we obtain morphism m0 : G ! LC making the diagram
commutative. Given pullbacks (n, idK) of (n•, ⌘K) and (l, idK) of (idL, l) and
the given pushouts (m, g) and (lc, cl) together with the van-Kampen property of
Definition 2, guarantee that (g, n•) is pullback of (m0, lc) and (m, idL) is pullback
of (m0, cl). This last pullback property and ul being monic such that (m0, idG)
is pullback of (ul, ul � m0) implies that ul � m0 = m• by pullback composition
and uniqueness of totalisations. Since (n•, g) is pullback of (m0, lc) and (h, p) is
pushout of (r, n), �%hmi = % hmi and m h�%i = m h%i.
10 For proofs, see Appendix B.2.
11 For the proof, see Appendix B.3.

10

L• R•

L
C

K• R
C

L K R

G D H

ul

(⌘K ,l)• (⌘K ,r)•

lc rc

ur

(PO)
m

⌘L

cl

(PO)
n

l

⌘K

r

p

⌘R

cr

m

•

m

0

g

h

n

•
p

0

Figure 12. DPO-rule simulation

4 Model Refactorisation - Some Sample Rules

In this section, we demonstrate the applicability of double-pushout rewriting in
context by some sample rules for object-oriented system refactoring [7]. To keep
the examples simple, we use the simplified meta-model M for object-oriented
models defined in Figure 6.
Figure 13 depicts two first sample rules. The mapping of the morphisms is in-
dicated by number correspondence. For easy notation, we identify the undefined
type of each partial arrow classifier (grey boxes in Figure 8) with the framing box
which surrounds the respective graphical visualisation of the algebra. We also
implicitly assume that the two (completely undefined) loops on the undefined
type are contained in and preserved by the context specification of all rules.
An edge which connects a type inside a picture with the frame is some context
inheritance relation or association, i. e. belongs to LC , C, or RC .

Figure 13. Extracting abstract type

Figure 13 depicts variants for extracting an abstract type out of a given type.
The first variant on the left refines the inheritance hierarchy by splitting the
matched type “1/2” into an abstract particle “1” and a concrete particle “2” in
the intermediate structure K. The context relations of the split type are distrib-
uted as follows: All target-roles of associations and child-roles of inheritance
relations are attached to the abstract particle, all other roles are connected with

11

Figure 14. Introducing proxy

the concrete particle. Note the explicit handling of association loops which also
follows this rule wrt. owner- and target-roles. Finally, the rule’s right-hand side
R adds the needed inheritance relation between the two particles. The difference
of the second variant is that the new abstract type is not integrated into the
existent inheritance hierarchy.
Note that both rules formulate a negative application condition, namely that
there are no Inheritance-loops on the refactored type. This shall be true in all
reasonable object-oriented models where the inheritance relation is hierarchical.
The rules in Figure 13 read from right to left specify the elimination of super-
fluous types. For these elimination rules to work correctly, the type “1” shall be
abstract. This is a feature that must be added to the model signature in Figure 6.
We do not describe the details here due to space limitations.
Figure 14 depicts a rule that puts indirection into an object-oriented model by
introducing some proxy-objects [6]. Again the context is distributed as in Fig-
ure 13, the refactored type, however, is split into three particles, namely “1” which
further manages the resources of the type, “2” which provides abstract access to
’objects’ of type “1”, and “3” which can be interpreted as an approximation of the
original type. The rule’s right-hand side adds the needed inheritance relations
and the association which allows ’proxy’ objects to delegate to ’real’ objects.

Figure 15. Pulling-up association

Figure 15 describes the shift of the owner-role of an association to a more abstract
type.12 This rule is neither left- nor right-linear. The standard DPO-solution for
12 Double-headed context arrows represent a pair of arrows one in each direction.

12

Figure 16. Preserving inheritance hierarchy

this purpose is a linear rule that deletes the association on the left-hand side and
adds a new association on the right-hand side. This rule has the same effect on
the model level. But if there were instanceOf-relations from the object level to
the model level that point to this association,13 the rule in Figure 15 preserves
all these links while the linear rule deletes them and introduces a new ’empty’
association without any links. For details compare also [13].

Figure 16 demonstrates a useful application of the application conditions which
are built-in in DPO-C-rewriting. These two rules add inheritance relations care-
fully, i. e. they keep the inheritance hierarchy cycle-free: A type “2” can only
become new sub-type of type “1” if it has no sub-types itself and a type “3” can
only become new super-type of type “4” if it has no super-types itself. Since the
association context is not important here and the rules are linear, the asterisk-
notation we used in Figure 16 indicates complete association contexts.14

These examples demonstrate the DPO-C-rewriting can be useful in practical
applications and that it is worthwhile to elaborate more complex case studies.

5 Parallel Independence

Parallel independence analysis investigates the conditions under which two re-
writes of the same object can be performed in either order and produce the same
result. Essential for the theory is the notion of residual match: Under which con-
ditions are two matches mG : L ⇢ G and mH : L ⇢ H for a rule’s left-hand side
L the same match, if there is a trace (g : D ! G, h : D ! H)? The DPO-answer
is: mG and mH are the same, if there is mD : L ⇢ D with g �mD = mG and
h � mD = mH , compare [9]. This answer is not sufficient for DPO-C, since we
need to take the context matches into account as well, i. e. m•

G, m•
D, and m•

H

shall classify the ’same objects’ the same way. This means that we must require
m•

G � g = m•
D and m•

H � h = m•
D which, by Fact 4 (2), is equivalent to requiring

that (idL,mD) is pullback of (mG, g) and (mH , h).15

13 This feature needs to be added in the model signature in Figure 6.
14 Complete association contexts means e. g. for type “1” in Figure 16 that there ’are’ 2

adjacent association pairs from and to type “2” and from and to the undefined type.
15 This condition is identical to the one in [2].

13

L L L

G D H

m (PB) (PB)mD

idL idL

m

gh

g

h

Figure 17. Residual

Definition 16 (Residual). Let (g : D ! G, h : D ! H) be a trace of a direct
derivation and m match for rule � in G. A match mgh for � in H is the residual
of m for trace (g, h), if there is morphism mD from the left-hand side L of � to
D such that (idL,mD) is pullback of (m, g) and (mgh, h), compare Figure 17.

The pullback properties uniquely determine the residual, if it exists. Two deriv-
ations of the same object are independent, if they have mutual residuals.

Definition 17 (Parallel independence). Two direct derivations with rules
�1 and �2 at matches m1 and m2 resp. rewriting the same object are parallel
independent, if m1 has a residual for �2 hm2i and m2 has a residual for �1 hm1i.

Theorem 18 (Confluence). If derivations with rules �1 and �2 at matches m1

and m2 are parallel independent, then the derivations with the mutual residuals
m

�2hm2i
1 and m

�1hm1i
2 produce the same result, i. e. �1@m

�2hm2i
1 ⇡ �2@m

�1hm1i
2 .16

6 Conclusion

We introduced a conservative extension of linear DPO-rewriting which we call
DPO-C. The “C” indicates that the extension allows explicit handling of the
context of a match. The context specification allows non-linear rules with de-
terministic and reversible rewrites: Given a match m : L ! G for rule � with
left-hand side L and right-hand side R, the rewrite with � at m produces a
uniquely determined result H and provides a co-match p : R ! H such that the
rewrite with the inverse rule ��1 at p results in an object isomorphic to G.
The deterministic and reversible behaviour of DPO-C allows to extend well-
known theoretical results. We started the analysis of parallel independence in
this paper. And the explicit handling of context improves the applicability of
the rewrite approach in situations where ’unknown context’ must be checked (by
some negative application conditions), distributed, or merged. We demonstrated
this mechanism by some examples from system refactoring. Thus, a further de-
velopment of DPO-C seems worthwhile from the practical and theoretical point
of view. Future research can address the following issues:

– Characterising conditions for parallel independence.
16 For the proof, see Appendix B.4.

14

– Extension of the theory for example with respect to sequential independence,
concurrency, critical pair analysis, parallelism, and amalgamation.

– Comparison of the DPO-C-built-in negative application conditions to the
well-known negative application conditions from the literature, e. g. [8].

– Comparison of DPO-C to other reversible approaches e. g. [2].
– Development of a clear and handy visual notation for the rules especially for

the context specification.
– Elaboration of bigger case studies e. g. in the field of model transformation.

References

1. Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric Prost, and Leila
Ribeiro. AGREE - algebraic graph rewriting with controlled embedding. In
Francesco Parisi-Presicce and Bernhard Westfechtel, editors, Graph Transform-
ation - 8th International Conference, ICGT 2015, Held as Part of STAF 2015,
L’Aquila, Italy, July 21-23, 2015. Proceedings, volume 9151 of Lecture Notes in
Computer Science, pages 35–51. Springer, 2015.

2. Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer, and Sandro Stucki.
Reversible sesqui-pushout rewriting. In Graph Transformation - 7th International
Conference, ICGT 2014, Held as Part of STAF 2014, York, UK, July 22-24, 2014.
Proceedings, pages 161–176, 2014.

3. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundament-
als of Algebraic Graph Transformation. Springer, 2006.

4. Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and
Model Transformation - General Framework and Applications. Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 2015.

5. Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy Schürr, editors.
Graph Transformations - 5th International Conference, ICGT 2010, Enschede, The
Netherlands, September 27 - - October 2, 2010. Proceedings, volume 6372 of Lecture
Notes in Computer Science. Springer, 2010.

6. Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

7. Martin Fowler. Refactoring - Improving the Design of Existing Code. Addison
Wesley object technology series. Addison-Wesley, 1999.

8. Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with
negative application conditions. Fundam. Inform., 26(3/4):287–313, 1996.

9. Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph trans-
formation revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001.

10. Tobias Heindel. Hereditary pushouts reconsidered. In Ehrig et al. [5], pages 250–
265.

11. Stephen Lack and Pawel Sobocinski. Adhesive and quasiadhesive categories. ITA,
39(3):511–545, 2005.

12. Michael Löwe. Graph rewriting in span-categories. In Ehrig et al. [5], pages 218–
233.

13. Michael Löwe. Refactoring information systems: association folding and unfolding.
ACM SIGSOFT Software Engineering Notes, 36(4):1–7, 2011.

15

A Pushout and Pullback Composition and Decomposition

H G F

C B A

(1)

g

(2)

f

k

c

j

a

i

Figure 18. Pushout and pullback composition and decomposition

Proposition 19 (Pullback composition and decomposition). Let a com-
mutative diagram as in Figure 18 be given such that sub-diagram (1) is pullback.
Then (i, c � a) is pullback of (g � f, k), if and only if sub-diagram (2) is pullback.

Proposition 20 (Pushout composition and decomposition). Let a com-
mutative diagram as in Figure 18 be given such that sub-diagram (2) is pushout.
Then (g � f, k) is pushout of (i, c � a), if and only if sub-diagram (1) is pushout.

B Proofs

B.1 Proof for Proposition 9

The pullback and pushout constructed in Step 1 resp. 3 of Definition 8 are unique
up to isomorphism. So given two trace and co-match pairs ((g1, h1), p1) and
((g2, h2), p2) for two derivations with rule � at the same match m, there are
isomorphisms ig and ih such that ig � g1 = g2, ih � h1 = h2 � ig, and ih � p1 = p2.

B.2 Proof for Proposition 11

(1) We know that (m, idL) is pullback of (m•, ⌘L) and, since c•l is monic, that
(m0, idG) is pullback of (m•, c•l). Since c•l � cl = ⌘L and m0 �m = cl, pullback de-
composition17 provides (m, idL) as pullback of (m0, cl). Now (m, idL) is pullback
of (m0, cl) and we always have that (idK , l) is pullback of (idL, l). Thus, pullback
composition provides (idK ,m � l) as pullback of (m0, cl � l). Since cl � l = lc � c
and m� l = g �n, (idK , g �n) is pullback of (m0, lc �c). Since (g, n0) has been con-
structed as pullback of (m0, lc), pullback decomposition guarantees that (n, idK)
is pullback of (n0, c).
(2) Adhesivity (compare Definition 2 van-Kampen property if-part) guarantees
that (g,m) is pushout of (l, n), since the pushout (lc, cl) of (l, c) is a pushout
along monomorphism c and surrounded by 4 pullbacks, namely (i) (idK , n) of
17 See Appendix A.

16

(n0, c), (ii) (idK , l) of (idL, l), (iii) (idL,m) of (m0, cl), and (iv) (n0, g) of (m0, lc).
Now, pushout decomposition provides (m0, lc) as pushout of (g, n0).
(3a) Adhesivity (compare Definition 2 van-Kampen property only-if-part) guar-
antees the desired pullback properties, since (rc, cr) is pushout of (r, c) along
monic c, (p, h) is pushout of (r, n) by the construction of the derivation, (idK , n)
is pullback of (n0, c) by (1) above, and (idK , r) is trivially pullback of (idR, r).
(3b) Pushout decomposition provides that (rc, p0) is pushout of (n0, h).

B.3 Proof for Corollary 12

Consider the derivation in Figure 11. We are done, if the pair (p, p0) is match for
the inverse rule, since, by Proposition 11, (n0, h) is pullback of (rc, p0) and (g,m)
is pushout of (l, n). Thus, it remains to show that c•r �p0 = p•, i. e. that (idR, p) is
pullback of (⌘R, c•r � p0). We know by Proposition 11 (3a) that (p, idR) is pullback
of (p0, cr) and, since c•r is monic, that (p0, idH) is pullback of (c•r � p0, c•r). Since
c•r � cr = ⌘R, pullback composition provides the desired result.

B.4 Proof for Theorem18

The complete situation with two derivations using rule �1 = (l1, c1, r1) at match
m1 and rule �2 = (l2, c2, r2) at match m2 is depicted in Figure 19. The two
morphisms to the intermediate objects D1 and D2 provided by Definition 16 for
residuals are m21 and m12 resp. Thus, the residual matches are h1 � m21 and
h2 �m12. Since they are matches, their totalisations (h1 �m21)

• and (h2 �m12)
•

factor through L2
C and L1

C resp. The morphism m⇤
2 : H1 ! L2

C denotes one of
these (factor) morphisms, i. e.

�
c2l
�• � m⇤

2 = (h1 �m21)
•. By Fact 4 (2) m•

21 =
m•

2 � g1. Since m•
2 factors through L2

C by m0
2, the same must be true for m•

21

such that there is m0
21 with m0

21 = m0
2 � g1. Again by Fact 4 (2) m⇤

2 � h1 = m0
21.

Construct pullback (g01, g
0
2) of (g1, g2) which provides morphisms n12 and n21

which make the diagram commutative. Pullback composition and decomposition
guarantees that (l1, n12) and (l2, n21) are pullbacks of (g01,m12) resp. (g02,m21) as
well as that (idK1 , n12) and (idK2 , n21) are pullbacks of (g02, n1) resp. (g01, n2). The
two pullbacks (n0

2, g2) and (g01, g
0
2) compose to the pullback (n0

21, g
0
2) of (l2c ,m0

21).
Now construct the left-hand side (g12, n⇤

2) of the derivation at residual h1�m21 as
pullback of (m⇤

2, l
2
c). Then we obtain h0

1 such that (h0
1, g

0
2) is pullback of (h1, g12).

Using the van-Kampen property of pushouts along monomorphisms, we obtain
pushouts (g02,m21) of (n21, l2) and (g12, h1 �m21) of (h0

1 � n21, l2) as in the proof
of Proposition 11. By pushout decomposition, (g12, h1) is pushout of (g02, h0

1).
Construct pullback (p12, x) of (p1, g12).18 This provides monic p12 and morphism
y (not in Fig. 19) with x � y = r1 and (y, n12) as pullback of (h0

1, p12). Fact 4 (3)
implies that (x, r1) is pushout of (idK1 , y) such that x = idR1 and y = r1. Now,
pushout (p1, h1) of (r1, n1) is surrounded by 4 pullbacks, namely (p12, idR1),
18 The morphism x is not depicted in Figure 19. It will turn out to be the identity.

17

L1
C

C1 R1
C

L1 K1 R1

L2
C

L2 G D1 H1

C2 K2 D2 D⇤ D12

R2
C

R2 H2 D21 H

l

1
c r

1
c

m1

c

1
l

n1

l1

c1

r1

p12

p1

c

1
r

l2

c

2
l m2

g2

m

0
1

m

0
2

m

0
21

m21

g1 h1

n

0
1

m

⇤
2

l

2
c

r

2
c

r2

c2 n2

n

0
21

m12

n

0
2

h2

n21

n12

h

0
2

h

0
1g

0
1

g

0
2

n

⇤
2

g12

h12

p21

c

2
r p2 g21 h21

Figure 19. Parallel independence

(r1, idK1), (n12, idK1), and (h0
1, g

0
2), such that (h0

1, p12) is pushout of (r1, n12) by
adhesivity. By symmetry (h0

2, p21) is pushout of (r2, n21).
The right-hand side pushout of the derivation with �1 at the residual match
m

�2hm2i
1 , i. e. the pushout of r1 and h0

2 � n12, can now be decomposed providing
pushout (h12, h21) of (h0

1, h
0
2). Pushout composition shows that h12 is the right

part of the trace for the derivation with �2 at residual m�1hm1i
2 . Thus, (g12, h12)

and (g21, h21) are the traces of the rewrites at the residuals.

18

	Double-Pushout Rewriting in Context

